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Since the “quarter-wavelength transformer” principle operates for low-loss line sections
that are any odd number of quarter-wavelengths long, another possible solution of Example
7.7 would be to use a 4} wavelength section of the line whose characteristic impedance is
134 ohms. The length of this section would be about 101.5 ft. In practice, however, this
solution would be a poor one, since actual signals always occupy a finite range of frequencies.
Over any small frequency interval the range of variation of the term gl in (7.20) for a 41
wavelength line section would be 17 times as great as for a } wavelength line section. In
the solution illustrated by Fig. 7-2, the 95 ft of line with characteristic impedance 500 ohms
would have little effect on the frequency sensitivity of the system, because this characteristic
impedance is equal to the impedance of the source to which the line is connected. These
statements can easily be checked quantitatively by using the transmission-line circle diagram
discussed in Chapter 9. :

It has been pointed out in Section 2.1 that the uniformity postulate underlying the trans-
mission line analysis of this book is violated in the vicinity of terminations and other dis-
continuities on transmission lines. In the use of quarter-wavelength or half-wavelength
transformers, such discontinuities occur at each end, either where the line section is con-
nected to a source or load, or where it is connected to a transmission line section of different
characteristic impedance. The main practical consequence of this departure from idealized
conditions is that the optimum length of these transformers in specific applications is likely
to differ slightly from the value calculated using the equations of uniform lines. The dif-
ference is generally much less than one transverse dimension of the line, and the experi-
mentally optimum length is best found by starting from the calculated value and making
small adjustments.

7.5. Determination of transmission line characteristics from impedance measurements.

When an arbitrary length of any general transmission line is terminated in an open
circuit or a short circuit, its input impedance is determined completely by the propagation
factors « and B, the characteristic impedance Z, and the line length I. From (7.20), if
Zr=0 (but «+ 0) the input impedance Z,. of a line of length I with short circuit ter-
mination is .

The input impedance Z,. of the same line with open circuit termination is
Zoe = Zocoth(a+ip)L (7.26)

If Z,. and Z,. are measured at the same frequency, for a line section of length I, then
Zo, a, B, and | will have the same values in both of the equations (7.25) and (7.26). Multi-
plying together the corresponding sides of these equations gives

Z{) = \/Zchoc (7'2?’)

This is a valuable and universally valid equation by which the characteristic impedance of
any type of uniform transmission line can be obtained from two impedance measurements
made on a sample length of the line, using two readily available terminal load impedances.

Two precautions must be observed in making the measurements needed for this calcula-
tion. First, the impedance-measuring device must be capable of measuring “balanced”
impedances if the line conductors are symmetrical (e.g. a parallel-wire line or a shielded
pair), or of measuring “unbalanced” impedances if the line has one of its two conductors
acting as a shield or “ground” (e.g., a coaxial line or a stripline). Second, the length of line
I cannot be completely arbitrary but must be chosen so that both Z,c and Z,. have values
appropriate to the impedance-measuring device. It is obvious, for example, that for an
extremely short section of any line Z,. might be too small and Z.. too large to be accurately
measurable by any available bridges. Use of the transmission line charts discussed in
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Chapter 9 will show that line-section lengths close to any odd number of eighths of a wave-
length are particularly appropriate. For such line lengths Z., Z,. and Z, will all have
similar magnitudes. If the wavelength is only approximately known, measurements can be
made at several values of [ until this condition is found.

The attenuation factor « and the phase propagation factor g can also be calculated from
the measured impedances Z;. and Z,.. Dividing corresponding sides of (7.25) by those of

(7.26),
'“? Zsc!Zoc = tal'lh ((]'_' + j’g)t
Expanding this hyperbolic tangent in exponential form, using y = «+ 38,

VZulZo = (1—e /(1 + e~21)

which gives P 1+ VZselZoe
i V ZselZoc

Taking logarithms of both sides,
1 + Zscf
(a+7B) = 3 loge ==
1 S ZSCKZOO

The logarithm of a complex number expressed in polar form Ae’ is defined by
loge Ae’® = log. A + j(¢ +2nr)

The attenuation factor « is therefore given by

«a = 2% log. -1—}———— % nepers/m (7.28)

when [ is in meters. The phase propagation factor g8 is given by

f = i{(phase angle of l—t—————— M) + an} radians/m (7.29)
2l 1 = VZulZoe

This method does not determine a unique value for g8, but a series of values differing con-
secutively by =/l rad/m. In a practical case it may sometimes be difficult to decide which
value in the series is the correct answer.

Example 7.8.

At a frequency of 20.0 megahertz the input impedance of a section of flexible coaxial transmission line
32.0 m long is measured, first with the line terminated in a short cireuit and then with the line terminated
in an open circuit. The respective values obtained are Z,. = 17.0 + j19.4 ohms and Z,. = 115 — j138 ohms.
Find the attenuation factor, the phase propagation factor, and the characteristic impedance of the line.

The impedances are needed in polar form for all of the calculations. Z,. = 25.7/48.8° and Z, =
179/—50.2° ohms. The characteristic impedance from (7.27) is then Z, =VZ, Z,. = 68/=0.7° ohms.

For determining « and 3 the quantity /Z,./Z,. = 0.378/49.5° = 0.245 + j0.288 is required. Using
equation (7.28),
S
2(32.0) '8¢

The phase angle of the term (1.245 + j0.288)/(0.755 — j0.288) is found to be 33.9°. From equation (7.29),
B = (0.59 + 2nx)/(2 X 32.0) rad/m, but there is no basis for choosing the value of n.

At the frequency of the measurements, the free space wavelength is 15.0 m and the corresponding
value of g8 would be found from g = 2»/x = 0.419. Since the line contains plastic dielectric it is expected
that the wavelength on the line may be as much as 30% shorter than the free space value, but the figure
is not known accurately. Hence 8 might conceivably lie between about 0.50 and 0.65. The above equation
gives =040 for n =4, B =050 for n =5, =060 for n=6, and 8 =0.710 for n=1T.

1.245 + ;0.288

“ 0.755 — 50.288

0.0072 nepers/m
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On the evidence available, there is no conclusive basis for choosing between the two intermediate
values. The data indicates that the line section is between two and three wavelengths long. By making
the same impedance measurements on a shorter length of line, lower values of n will occur in the equation
for B8 and there will be less doubt about which value should be chosen.

For a section of the same line 1.50 m long, the impedance values measured were Z,, = 0+ j88 ohms
and Z,. = 0—j62 ohms, the resistive component in each case being less than 1 ohm. From these values
the characteristic impedance is calculated as 68/0° ohms.

Because the quantity VZ, Z, = 0+ 71.30 is purely imaginary, the attenuation factor « is indicated
as having value zero. The phase angle of the term (1 + 71.30)/(1 — j1.80) is 105° or 1.83 rad. From equa-
tion (7.29), B = (1.83 + 2n7)/(2X 1.50) = 0.61 rad/m for n = 0, or 270 rad/m for n = 1. It is
clear now that n = 6 gave the correct value in the previous data and that the measured value of g is
0.60 (or 0.61) rad/m. It is also evident that measurements on this short length of line cannot be used to
obtain a value for the attenuation factor a.

Consideration of the equations shows that this method of determining « and g from
measurements of Z,. and Z,. will give the best results for « when the line section has a
total attenuation of about 3 db, and will give the least ambiguous results for 8 when the
line is about one-eighth wavelength long. Except at frequencies in the kilohertz range, a
single piece of any practical transmission line will not satisfy both of these conditions, so
that measurements of « and 8 should usually be made on two different line sections, one
much longer than the other. Measurements on either section will give satisfactory data
for the determination of Z.

7.6. Complex characteristic impedance.

The characteristic impedance of a transmission line was originally defined in terms of
the line’s distributed circuit constants, and given by equation (4.12) as

Zo = V(R + juL)/(G + juC)

Since R, L, G, C and o are all positive real numbers for a passive transmission line, it follows
from this expression that the phase angle of Z, must lie between —45° and +45° or, if
Zo= Ro+7X,, the ratio Xo/Ro must lie between —1 and +1. The extreme values occur
when either R> oL and G € oC, or R <ol and G > oC. For either of these sets of
conditions the defining equation (4.10), « + j8 = V(R + juL)(G +joC), shows that «=p.

Noting that 8 = 2x/A, the relation « = 8 has the physical meaning that the attenuation
of the line is 2= nepers per wavelength or 54.6 decibels per wavelength. Transmission linesv
useful at high frequencies have attenuations per wavelength smaller than this value by
several orders of magnitude, but Table 5.1, page 55, shows that a standard type of telephone
cable-pair can have a very nearly equal to g (and |Xo| nearly equal to Ro) at frequencies
below about 1 kilohertz.

Neither a large value of attenuation factor « in nepers per meter, nor a large total
attenuation ol in nepers, is a sufficient condition to ensure that the characteristic impedance
of a transmission line will have a substantial phase angle. The attenuation over one
wavelength of line, aA nepers, must be large, and it must be caused predominantly by one
of R or G and not by a combination of the two. It has already been noted that if the losses
are due equally to R and G, Z, is real, no matter how high the losses are.

When the characteristic impedance of a transmission line has an appreciable phase
angle, some peculiar results arise, which need further discussion. If, for example,
Zo = Ro+ jX, and the line has a terminal load impedance Zr = 0 — jX,, the reflection
coefficient determined from equation (7.10) is

pr = (—7Xo — Ro — jXo)/(— jXo + Ro + jXo) = —1— j2Xo/Ro



